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Molecular dynamics
simulation setup to
calculate 𝜅𝐿

Why do we need efficient thermoelectric (TE) devices?

Towards better thermoelectric materials

Aperiodic superlattice structures exhibit significantly lower 
thermal conductivity than periodic superlattice

Conclusions
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 We have identified several key features for machine learning to predict 
thermal conductivity of multilayer structures.

 We have demonstrated that rational doping can reduce the thermal 
conductivity of aperiodic superlattice structures even further
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 NASA Applications: RTG is the primary power source of most of 
NASA’s deep space missions. The poor efficiency of TE materials is one 
significant limiting factor for such RTGs.

 Energy Recycling: Around 70% of the consumed energy is wasted in 
the form of low-grade heat. Thermoelectric devices can generate 
usable electricity from the waste heat. 

 Cooler or Refrigerator: Thermoelectric coolers are noise free, do not 
need working fluids, and occupy less space. Thermoelectric materials 
are used for cooling small-scale devices.

 Figure of merit (𝑍𝑇) of thermoelectric materials 

𝑍𝑇 =
𝜎𝑆2𝑇

𝜅𝑒 + 𝜅𝐿

𝜎 = Electrical conductivity
𝑆 = Seebeck coefficient
𝑇 = Temperature
𝜅 = Thermal conductivity

 Minimizing the lattice thermal conductivity while retaining good 
electrical conduction is essential for developing high-ZT thermoelectric 
materials.

 Several scattering strategies are used for reducing 𝜅𝐿…………….. 

 These scattering mechanisms are well studied and the outcome tends 
to be saturated. We need new strategies to further reduce 𝜅𝐿.
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Aperiodic Superlattice
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Aperiodic Superlattice (ASLs)  localize the coherent phonon transport and 
therefore, exhibit lower thermal conductivity than superlattice structure

Quantification of randomness in aperiodic superlattice (ASL)

 We identified a few disorder parameters to correlate the randomness 
with 𝜅𝐿 of ASLs obtained through molecular dynamics simulations

 Thickness based randomization index
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 Period based randomization index
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 Standard deviation

 We still could not find the best ASL configuration. Machine learning 
can aid us for the same. 

 Neural network 
 Training data (3200 structures)
 Testing data (200 structures)
 Python packages
 Features: Thickness sequence, 

𝑅𝑝, 𝑅𝑑 , and 𝛿.
 Machine learning model predicted 

𝑘𝐿 are compared with true-𝑘𝐿

Doping reduces the thermal conductivity of ASLs even further

 Recommendations: 𝑚dopant ≫ 𝑚A,B(ASL) or 𝑚dopant ≪ 𝑚A,B (ASL)

A (40 g/mol) B (90 g/mol)  Lennard-Jones potential

Molecular dynamics (MD) simulations
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 Conceptual materials for 
computational efficiency

 LAMMPS package
 Non-equilibrium molecular 

dynamics simulations
 𝜅𝐿is calculated as 

𝜅𝐿 =
𝐽𝐿

𝐴𝑐 𝑇ℎ − 𝑇𝑐

 ε = 0.1664 eV and 𝜎 = 0.34 nm  
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Aperiodic Superlattice

Objective of this work
Correlate the randomness and thermal conductivity of ASLs
Achieve optimized ASLs through machine learning
Further reduction of ASL thermal conductivity through rational doping

Randomness index and lattice thermal conductivity (𝜅𝐿) relation
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Higher 𝑅𝑑 , 𝑅𝑝, 𝛿 should 

result in lower 𝜅𝐿
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Machine learning prediction of thermal conductivity
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