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BACKGROUND

More than 70 pathway analysis techniques have been developed
to understand the molecular mechanisms under certain
conditions, especially with complex diseases [1]. However, most
methods are sensitive to noise in expression data [2] and are
bias toward certain pathways [3].

OBJECTIVES

Developing a powerful ensemble approach, Bias-Aware
Consensus Perturbation Analysis (BACPA), that (i) takes
advantage of each method’s strength, (ii) is robust against noise,
and (iii) performs unbiased analyses.

Fig. 3. Ranking of target pathways on 4 diseases

Bias Correction: A random dataset is
repeatedly generated from a pool
containing only control samples and is
used as the input for the pathway
analysis to obtain the empirical null
distribution of p-values for each
pathway. These distributions are used
to correct the resulted p-values.

Fig. 2. Empirical null distribution generation 

METHODS

Perturbation Pathway Analysis: Samples in the input data
is repeatedly perturbed and filtered to mitigate the effect
of the noisy nature of the expression data [4].

Consensus Statistical Testing: Three statistical hypothesis
tests including Fisher’s exact test (ORA), KS test, and
Wilcox test are used to compute the significance values of
impacted pathways, which are then combined using the
Additive Method or Central Limit Theorem [5].

Fig. 1. Consensus perturbation pathway analysis 
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RESULTS
Data: 22 datasets containing 4 diseases with a total of 1,713
samples (742 control samples, 971 disease samples).
Metric: Target pathway’s ranking (smaller the better).
Methods: ORA [6], KS, Wilcox, GSEA [7], GSA [8], and BACPA.
Results: BACPA produces the best rankings for target pathways.

CONCLUSION

BACPA is an effective method for pathway
analysis. It is fast, non-bias and robust
against noise.

FUTURE WORK
• Apply BACPA to study the effects of
microgravity on living organisms using data
from NASA GeneLab.
• Build an interactive web interface to
visualize and explore the analysis results [9].
• Apply the methodology to related fields
using genomic data including meta-
analysis [10], omics integration [11],
subtyping [12], and single-cell analysis [13].
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