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Advances in single-cell technologies have shifted

genomics research from the analysis of bulk tissues toward

a comprehensive characterization of individual cells. This

holds enormous opportunities for both basic biology and

clinical research. However, low amount of mRNA available

within individual cells leads to the excess amount of zero

counts caused by dropout events

hypothesis testing
approach to determine the set of genes that are likely to be

impacted by dropouts

Objectives

Develop an imputation method, RIA, that can reliably

impute missing values from single-cell data. RIA consists

of two modules. The first module performs a hypothesis

testing to identify the values that are likely to be impacted

by the dropout events. The second module estimates the

missing value using a robust regression approach.

Data: 5 datasets with a total of 3,535 cells.

Metric: Adjusted Rand Index (ARI) [8], Jaccard Index [9]

and Purity Index [10].

Methods: scImpute [15], MAGIC [16], t-SNE [17].

Results: RIA produces the best ARI values, preserve the

transcriptomics landscape and significantly elucidates the cell

lineage identification.

Fig. 2. RIA preserves the transcriptomics landscape for Zeisel [14] 
dataset.

Hypothesis Testing and Identification of Dropout : to

determine genes that are likely to be impacted by

dropouts. Genes that are not impacted by dropouts, the

log-transformed expression values are normally

distributed. We use z-test to determine whether a zero is

impacted by the dropout events. Original data is divided

into two sets of genes: a set G that include genes affected

by dropout (imputable set), and a set M that have high

confidence of not being affected by dropout . (training

set)

Regression-based Imputation:

• We select genes from the training set that are highly

correlated with the gene we need to impute.

• We train the linear model using these highly-correlated

genes and then estimate the missing values

• Outperforms existing state-of-the-art

approaches in cell group identification.

• Recover temporal trajectories in

embryonic development stages

• RIA is fast and is able to impute

thousands of cells with tens of

thousands of genes in minutes

Future work

We plan to utilize the perturbation

clustering [3],[4],[6].

Fig. 1. The overall pipeline of RIA.
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