Characterization of a Novel beta-Glucanase From the Hyperthermophile *Fervidibacter* sacchari, the Sole Isolate of an Ancient Bacterial Class

Jonathan K. Covington¹, Nicole Torosian¹, Allison M. Cook¹, Scott G. Bryan¹, Kasthuri Venkateswaran², Nitin K. Singh², Brian P. Hedlund^{1,3}

¹ School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, USA

² Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

³ Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, USA

Abstract

Although once speculated to be the oldest bacterial lineage, few studies have investigated candidate class "Fervidibacteria" since its discovery. *Fervidibacter sacchari* was isolated in our lab and is the only cultivated member of the class. It possesses a large and diverse cache of polysaccharide-degrading glycoside hydrolase (GH) enzymes and degrades diverse polysaccharides. One such GH belongs to family GH50, of which all are characterized members are classified as beta-agarases from predominantly mesophilic microbes. Here we describe heterologous expression of this GH50 in *E. coli* and its characterization using 3,5-dinitrosalicylic acid and 4-nitrophenol enzyme activity assays. We demonstrate that this GH possesses a novel activity for the family as a beta-glucanase with strong activity on beta-(1,4/1,3)-glucans, a pH optimum of ~7, and a temperature optimum of ~80 °C, making it the first characterized hyperthermophilic GH50. Creating a Lineweaver-Burk plot revealed a V_{max} of 357.1 μ M/min and K_m of 12.6 mM. This project paves the way for characterizing other *F. sacchari* GHs and addresses a need for easily producible cellulolytic enzymes capable of degrading plant waste, a requirement for long-term space flight.