Numerical Analysis of Smoke Transport in Reduced Gravity

N

Bjoern Bingham^{1,2}, Salix Bair^{1,2}, Matthew Claassen^{1,2}, Xiaoliang Wang^{1,2}, John G. Watson², W. P. Arnott¹, Marit E. Myer³, and Claire Fortenberry⁴ ¹University of Nevada, Reno, NV; ²Desert Research Institute, Reno, NV; ³NASA Glenn Research Center, Cleveland, OH; ⁴Universities Space Research Association, Cleveland, OH

Objectives

- To improve spacecraft fire safety by studying smoke emission and transport in the Orion Multi-Purpose Crew Vehicle using Computational Fluid Dynamics (CFD) simulations;
- To evaluate the impact of gravity (i.e., Earth, lunar, Mars, and microgravity) on smoke transport;
- To identify optimal locations for smoke detector placement;
- To compare flow orientation on smoke transport and clearance.

Modeled Emissions & Numerical Output

Figure 3. a-c) comparing flow orientations: a) Particle mass concentration above the seats around where astronauts would be; b) Particle mass concentration in the volume below the hatch; c) total mass of gaseous emissions within the domain.; d-f) comparing gravities: d)Total mass of emitted gaseous species in domain; e) Particulate concentration in top hatch volume; f) Mass concentration of particulate in the top of the main volume.

Acknowledgments: Nevada Space Grant 80NSSC20M0043 22-24 and NV Space Grant Fellowship

- Simulation software: Fire Dynamics Simulator (FDS) by the National Institute of Standards and Technology.
- Orion space module dimensions: from other publications and public release notes on the Artemis missions.
- Ventilation rates: 77 air exchanges per hour (same as that in the International Space Station).
- Gravity: Earth (1 g); Mars (0.38 g); Lunar (g/6); and microgravity (0 g).
- Smoke source: a 5 g polytetrafluoroethylene (PTFE) cube overheated to 640° C.
- Smoke emission rate: from experimental study by our group.

Model Output

Figure 5: Time evolution of smoke transport for both top down and across flow orientations in Earth gravity and micro gravity

Conclusions

Mixing from ventilation reduced the expected stratification of emissions due to gravity. Ventilation design and arrangement, as well as flow obstructions heavily influenced results. Top-down ventilation was more effective for long term purge; the across flow cleaned the air around astronauts more effectively, but also had more stagnant areas that trapped emissions. • Further investigation with laminar flow ventilation is necessary, but smoke detector placement in ventilation outlets seems ideal.

Horizontal Velocity				
Top Dov	wn	Across Flow		
				Velocity
0.2	0.4 0.6	0.8	1.0	m/s
flow for vertical and	horizontal velocity.			
Micro	Gravity Across (low		
			Gaseous Smoke species Mass fraction kg/kg air *10 ⁻⁶	
			65.0 58.5	
			52.0 45.5	
			39.0	
	5		32.5	
Sept.	E		26.0	
			19.5	
	13		13.0	
	4-5		6.5	
			0.0	
vitv.				