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Overview

Objective: Demonstrate the ability to use real-time data analysis methods to
determine, command, and control optimal performance conditions during

engine malfunction emergencies.

* Applicable to off-nominal/failure scenarios - stuck landing gear, doors, surfaces,
seized engine, or external carriage of stores that change aerodynamics.

« Use of real-time aerodynamic modeling to determine optimal path and state for glide
vehicles In terminal area operations.

Introduction

Manned Aircraft

« Over a 10 year period, 282 general aviation accidents due to loss of engine

* “A significant number of general aviation fatalities could be avoided if pilots were
better informed and trained in determining and flying their aircraft at the best glide
speed while maneuvering to complete a forced landing.” — FAA

Autonomous Vehicles

« Emergency Landing Zone — Currently rely on predicted glide ratio from models

Flying Vg aiige - The difference between safely making a landing zone or not!

Example: An F-16 at 10,000 feet

can glide over 13 statute miles

* Flying 40 knots fast results in a
reduction of 4.5 miles
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Optimum Performance: Optimal performance conditions can be determined from
aerodynamic modeling alone. Does not require empirical steady state data to determine.
* DragD = (Cp, + Cp,) * q * S where g dynamic pressure, S Reference area

» Cp,, Parasite drag coefficient and C, Induced drag = kC,*
« (; Lift Coefficient = L

q*S
Performance
Characteristic
OWEIEN Maximum endurance
O (I[S-I (time airborne)

where L is the lift force

Maximum Range
Glide Example:

Best Glide Cp, = k C7
Optimal Condition:

Parasite vs
Induced Drag

Maximum range

(D) CDO = 3 CDi tal’l()/) — _2 kCDO
distance traveled v — 2 . .
( ) V') min (=3kCi) Glide Ratio (5): -
3 Cp, = Cp, D/ 2.[kCp,
(= k CLZ) Range — Altitude
Maximum range | 2\ kCDy
(distance traveled) Alrspeed =

\/ng cos(y) ( k )1/4
pS CDO

Optimum Performance: Determination of aerodynamic coefficients Cp , and k

provide an estimation of achievable range and required flight path angle command to
optimize glide performance.
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Methodology

Physics Based Modeling: The aircraft longitudinal equations of motion were

utilized for wings level climbing, descending, and level segments of flight.

angle of attack for thrust incidence angle (~a < 10 deg):

may = m% =T—-D —Wsin(y) &  mayy =L (assumption a.y = ayz)
Drag Model: D = (Cpo + Cp,) * G * S = (Cpy + kC,%) * - pVp® * S

=Cpy * S * %pVT2+ k(madyy,)* VT_Z/(%p * S)

Linear Regression Model: Unknown Constants: Thrust (T), Cp, , k

Known Constants: reference area (S), mass (m), density p

av
Measurements: d—tT, Ve, az, v

x=1x,=S * ;pVp? and x3 = (may)* Vr /G p )

Y mVr, + Wsin(y)
Yk+1

X3k |
X3 k+1

X2 k
X2 k+1

- X1k
X1 k+1

y:

MVrgys + WSin(ie:)

Determination of unknown constants: [Ty Cp, k ]T = (X'X)"' X'y

Results — Flight Test Data

Data Collection: USAF Test Pilot School (USAF TPS) T-38 trainer aircraft.

Modified with on-board Flight Test Data Acquisition System (DAS). Test point
Identification methods developed to identify segments of flight data for analysis.

Test Point ID Windows for Performance Flight Test Techniques
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Results - Continued

Linear Regression Model Results: Aerodynamic modeling from segments of
flight test data. Example comparison between nominal and partial speed brakes.

T-38 Aircraft Performance Model - Weight 9400 Ibs
25k Ft, MIL Power, Partial Speed Brakes Out
Regression Fit with Confidence Intervals

T-38 Aircraft Performance Model - Weight 10200 Ibs
25k Ft, MIL Power, Clean Configuration
3. Regression Fit with Confidence Intervals 3 -

TO = 1221 Ibs per engine
_CDO =0.0194
k=0.426

T0 = 1215 Ibs per engine
_CDO =0.0178
k=0.403
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| |
500 600

Nominal T-38

Aerodynamic parameters Cp,: 0.0178,k:0.403 Cp,: 0.0194,k:0.426
Predicted best flight path angle -9.6 degrees -10.3 degrees
Predicted glide ratio 6 5.5

Predicted achievable range from 11.2 statute miles 10.4 statue miles

an altitude of 10k feet

Extended Kalman Filter for Fault Detection
Aircraft Velocity (ft/sec)
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Current Work: Use of an extended Kalman T

filter to detect and estimate change In parasite | - S
drag, termed an r factor. /
State Vector x = [V, r]"where r is the change ™ —
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Simulation Results: Use of an EKF was able to detect and estimate the r value and
corresponding change to parasite drag. Next step Is to apply to offline analysis of
flight test data during configuration changes

Conclusion & Future Work

USAF Test Pilot School (USAF TPS) Summer 2025:
* Implement control room methods for real-time system |
Identification methods to determine Cp,. —

* Apply aerodynamic models to determine optimal
alrcraft glide path trajectories. Compare model
predictions to traditional steady state empirical results.
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