COSMO-RS Prediction of Silicon Extraction from Lunar Regolith by Deep Eutectic Solvents

Howard R. Hughes College of ENGINEERING

Hamed Heidari and Eakalak Khan

Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV, United States

Introduction

- Around half of lunar regolith is made up of silica (SiO_2) (Fig. 1).
- Silicon is used in solar cells to convert light to electricity (Fig. 2).
- Electrochemical methods, molten oxide electrolysis, and microbes have been used to extract silica from lunar regolith (Fig. 3).
- Deep eutectic solvents (DES) are highly tunable solvents that have exceptional ability to dissolve a broad range of compounds, are environmentally friendly, and possess advantageous physicochemical properties (Fig. 4).
- Each DES consists of a pair of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). DES are potentially green solvents for mineral extraction from lunar regolith.
- COSMO-RS (COnductor like Screening MOdel for Real Solvents) is a quantum chemistry-based equilibrium thermodynamics method capable of predicting chemical potentials in liquids.
- The solubility of SiO₂ in 108 DES based on 15 HBD and 29 HBA was predicted.

Figure 1. A sample of Lunar regolith simulant.

Figure 2. Futuristic impression of human establishment on the Moon. https://spacesettlementprogress.com/lunar-regolithbeneficiation-a-review-of-the-latest-research/

- Identify top 5 DES for silica extraction experiment.
- Evaluate the selectivity and capacity of task specific DES.
- Investigate optimal conditions for extracting silica from Lunar regolith by selected DES.
- Thermodynamic properties prediction was executed by COSMO-RS to obtain the capacities of various DES for SiO₂ extraction by calculating $ln(\gamma)$ (indirect measure of SiO2 solubility).
- COSMO-RS was used as a theoretical basis for the DES selection (Fig. 5).
- Discrete molecular surface to predict thermodynamic properties was created.
- Each formed surface segment was characterized by its surface area and shielding density charge.
- database.

Figure 5. Flowchart of the research process

• Top 5 DESs in SiO₂ extraction were identified (Table 1). • The predicted dissolution efficiency in DESs is highly dependent on HBDs.

Table 1. Top 5 potential DES for extracting silica predicted by COSMO-RS

HBA Choline Chlo

Choline Chlo Tetra-nbutylammon chloride Tetra-nbutylammon chloride

Thymol

Figure 3. A hydrophobic deep eutectic solvent. https://extractionmagazine.com/2019/10 /19/deep-eutectic-solvents/

Objectives

• Screen DES for complete dissolution of silica in Lunar regolith.

Materials and methods

• The DESs components in this study were obtained from the COSMOtherm software

Key results

ounds	ln(γ)	γ quat tertiary	γ binary	Capacity
HBD	SiO_2	SiO ₂	SiO ₂	SiO ₂
Acetic acid	-0.64	0.52	0.13	7.60
4-oxo-pentanoicacid	-0.58	0.56	0.14	7.13
Acetic acid	-0.79	0.45	0.11	8.85
4-oxo-pentanoicacid	-0.66	0.51	0.13	7.78
Hexafluoro-i- propanol	-1.53	0.21	0.11	9.25
	ounds HBD Acetic acid 4-oxo-pentanoicacid Acetic acid 4-oxo-pentanoicacid Hexafluoro-i- propanol	oundsln(γ)HBDSiO2Acetic acid-0.644-oxo-pentanoicacid-0.58Acetic acid-0.794-oxo-pentanoicacid-0.66Hexafluoro-i- propanol-1.53	ounds $\ln(\gamma)$ $\frac{\gamma \text{ quat}}{\text{tertiary}}$ HBDSiO2SiO2Acetic acid-0.640.524-oxo-pentanoicacid-0.580.56Acetic acid-0.790.454-oxo-pentanoicacid-0.660.51Hexafluoro-i- propanol-1.530.21	ounds $\ln(\gamma)$ $\frac{\gamma \text{ quat}}{\text{tertiary}}$ $\gamma \text{ binary}$ HBDSiO2SiO2SiO2Acetic acid-0.640.520.134-oxo-pentanoicacid-0.580.560.14Acetic acid-0.790.450.114-oxo-pentanoicacid-0.660.510.13Hexafluoro-i- propanol-1.530.210.11

- SiO_2 extraction (Table 2).

Table 2. Activity coefficients of tetra-n-butylammonium chloride with other HBDs.

No	Compound	ln(γ)	
1	SiO_2	-0.47	
2	Tetra-n-butylammonium	0.0	
3	Cl_anion	0.0	
4	Lactic acid	-5.27	
5	Acetic acid	-3.49	
6	Pyruvic acid	-4.02	
7	Caprylic acid	-3.14	
8	Butyric acid	-3.56	
9	Nonanoic acid	-3.00	
10	Hexafluoro-i-propanol	-9.35	

DES in extraction of SiO₂.

Key results (continued)

• Thymol had the highest predicted SiO₂ extraction with hexafluoro-*i*-propanol. • Prediction SiO₂ extraction capacity by thymol (HBA), with other HBDs was poor (< 1.0). • Tetra-*n*-butylammonium chloride (HBA) had the highest average SiO₂ predicted extraction capacity with other HBDs (Capacity = 5.0). • The capacity of tetra-n-butylammonium chloride with other HBDs were evaluated for

Conclusions

• COSMO-RS can be used to screen DESs for extracting SiO₂ from Lunar regolith. • Certain DES have high capacities for SiO₂. • Analysis of activity coefficients suggests that hydrogen bonds are the primary contributor to DES's ability to extract SiO₂.

Future work

• Experimentally evaluate the capacity of the top 5 DES and identify the best performing

Acknowledgement

• The project is funded by the 2021-2022 NV NASA EPSCoR RID Seed Grant.