

University of Nevada, Reno

RHEOLOGICAL PROPERTY & STABILITY TESTS

Steady shear rate sweeps were performed to determine the yield stress (τ_0) of each SMP ink (Fig. 2a). Transient step shear rate

SMP PROGRAMMING

Fig. 5.

(a) Smart hinge in its

original, printed shape

Smart hinges can recover their original shapes after deformation upon exposure to external stimuli, such as temperature, pH levels, and light [1]. Currently, smart hinges are made using shape memory polymers (SMPs) through casting or vat photopolymerization, a threedimensional (3D) printing method. However, casting cannot fabricate smart hinges with complex geometries, while vat photopolymerization is limited to a single SMP build material that must have a low viscosity and be crosslinkable, severely narrowing the selection of SMPs. Direct ink writing (DIW) and embedded 3D printing (e-3DP) can be simultaneously used to create functional smart hinges with intricate structures and embedded circuits to monitor the performance.

BACKGROUND

OVERVIEW

A hybrid DIW/e-3DP approach has been proposed and investigated. A photocurable resin, tBA/AUD, was selected and mixed with different concentrations of fumed silica (FS) particles to prepare a self-supporting SMP ink. Thus, a complex 3D structure can be printed at uncured state in air via DIW, in which e-3DP can be applied to deposit a conductive ink into different sensors (Fig. 1).

Fig. 1. Schematic of hybrid DIW/e-3DP fabricated smart hinge with embedded circuits. (a) DIW of a liquid 3D hinge from a selfsupporting SMP ink. (b) E-3DP of conductive ink for a strain sensor within the uncured structure. (c) UV crosslinking. (d) Crosslinked hinge with a resistance wire to induce external stimuli. (e) Potential application where (e-1) programmed hinges can return to (e-2) the original printed shape to deploy mock solar panels.

MATERIALS

- 1) tert-Butyl acrylate (tBA): linear chain builder
- 2) Aliphatic urethane diacrylate (AUD): crosslinker
- 3) Fumed silica (FS): rheological additive

How will 6, 8, and 10% (w/v) FS affect 50%/50% (w/v) tBA/AUD?

Fig. 3. Printing parameters varied during printing tBA/AUD via (a) DIW and carbon conductive grease via (b) e-3DP. Schematic of (a-1) DIW and (b-1) e-3DP. Filament width as a function of path speed and pressure in DIW (a-2, a-3) and e-3DP (b-2, b-3).

FORMABILITY TESTS

Fig. 4. (a) Vertical tube and (b) gap tests. (c) Formability test results with schematics of the tube and gap deflection dimensions (d) Hinge after (d-1) DIW (2.5 bar and 3.0 mm/s) and during (d-2) e-3DP (3.5 bar and 0.3 mm/s). All Scale bars: 5.0 mm.

(b) Programming (c) Post-programming (d) Shape recovery All scale bars: 5.0 mr APPLICATION TESTING , Ωĥ 22.1 Time (s)

Fig. 6. Application testing. (a) Programmed hinges: (a-1) front view and (a-2) temperature distribution. (b) Unfolded hinges: (b-1) front view and (b-2) temperature distribution. (c) Resistance change of hinge during this process and temperature distribution of the hinge (insets). All scale bars: 10.0 mm.

CONCLUSIONS

- FS significantly adjusted the SMP ink's rheological properties.
- 8% (w/v) FS + 50%/50% (w/v) *t*BA/AUD was selected.
- An embedded circuit of carbon conductive grease was successfully printed inside a smart hinge with a complex geometry.
- The change in resistance of the hinge was measured from the e-3DP circuit while the smart hinges deployed mock solar panels on a mock space shuttle.

ACKNOWLEDGMENTS

- Nevada NASA Space Grant Consortium through the Graduate Research Opportunity Fellowship
- Fellows at UNR 3D Printing Lab

UNR 3D Printing Lab

- (Grant number: 80NSSC20M00043)
- NSF Graduate Research Fellowship Program (NSHE sub-award number: AWD0002282-1937966)

Thulani Tsabedze from Dr. Jun Zhang's Smart Robotics Lab at UNR

REFERENCES

[1] Zhang et al., "Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing," Advanced Materials, 2021, 33, p. 2101298.