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Methodology — Molecular Dynamics Conclusions

Quantifying the interfacial phonon transmission f‘ 12 3 4 5 6 7 - Phonon scattering expectedly varies with y, however,
function J'(k) is a critical component in estimating sl AAVSAVAAVSAVA SRS AVAS deviation in  reflection/transmission  behavior
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NS R 0 0 O 8 S | continuum analyses.
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et Reflected The Phonon Wave-packet (PWP) computational method is rigorously applied to investigate || Characteristics of phonon scattering by NP are
eriecte .
ballistic phonon wave scattering by a spherical NP with wavevector and mode consequence of an unreported phonon lensing effect,
""""""""""""""""""" dependence. In contrast to existing analyses of phonon-NP interactions, emphasis here is | | where refraction of the phonon wave at the non-
Incident y placed on studying transport behavior both inside the NP and the host lattice during and planar interfaces modifies the wave dynamics.
incident after scattering. Additionally, scattering by a thin slab (TS) (junction of two planar o , ,
AMM Qualitatively, the lensing structure is mostly specular

interfaces) is also examined to address Motivation Questions 1 and 2.

at low Yy and more diffuse at higher values. The
degree of specularity appears to impact the state of
interference inside the NP.

Many analytical & computational solutions have been
developed to predict the transmission function;
however, they mainly assume the interface is planar. *3 R = 0.51 — TA1 Waveform %3 R = 101 - TA1 Waveform

It may not be expected that phonon Scattering at t=0ps t=0Dps - Future WOrk|nVOIVe5 quant|fy|ng|mp0rtant Scatte”ng
interfaces with non-planar geometry is greatly akin to properties like scattering cross-sections & phase
behavior at planar interfaces. @ |l R | functions as well as specularity parameters.
1. How do phonons transport T s N Ciessans) T Novel |.n5|ghts on the |.mpa.ct qf NPs on thnon wave
across non-planar interfaces? . dynamics have large implications on .de5|gn.of NP-
N - T s " T s laden TEMs. Knowledge of how scattering varies with
e, 5 b h : N N I I e NP size, which is elucidated by this research, may
......... . HOw are phonon scattering | t=629.6ps| Minimal contrast aside | = 1068 ps. r |aree scattering contrast lead to development of an optimal NP size design
at planar and non-planar _ from mode excitation ) ) . ;
. S ool ——~— LIV I W structure for improved thermo-electric performance,
interfaces connected? " | 1a " | 1a " | 1a "
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beneficial for many NASA applications.
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