Omnitrophota: a diverse and ubiquitous candidate phylum of putative syntrophs, predators, and free-living nanobacteria

potential of *Omnitrophota*.

Cale O. Seymour^{1*}, Marike Palmer^{1*}, Eric D. Becraft^{2,3}, Ramunas Stepanauskas², Frederik Schulz⁴, Tanya Woyke⁴, Dengxun Lai¹, Jillian F. Banfield^{5,6,7}, Jian-Yu Jiao^{8,9}, Wen-Jun Li^{8,9,10}, Ariel D. Friel¹, Duane P. Moser^{1,11}, Brian P. Hedlund^{1,12}

¹ School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA

² Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA ³ Department of Biology, University of North Alabama, Florence, Alabama, USA.

- ⁴ DOE Joint Genome Institute, Walnut Creek, California, USA
- ⁵ Innovative Genomics Institute, Berkeley, California, USA
- ⁶ Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA

⁷ Department of Plant and Microbial Biology, University of California, Berkeley, California, USA

⁸ State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China ⁹ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, PR China

¹⁰ Chinese Academy of Sciences Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, PR China ¹¹ Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, USA

¹² Nevada Institute of Personalized Medicine, Las Vegas, Nevada, USA

species, and deleted if one or no species.

Omnitrophota is a diverse phylum of at least seven classes, accommodating ≥ 144 species. The systematic framework described here represents a major step forward in understanding this lineage.

Comparative genomics suggests predation, parasitism, and syntrophy—"eating together"—are common across the phylum, suggesting a conserved propensity toward **dependency or symbiosis**. However, the mechanism differs between classes.

Small cell sizes comparable to obligately parasitic bacteria are common across the phylum.

However, biosynthetic pathways and genome size are **not substantially reduced**. A survey of Omnitrophota in the Earth Microbiome Project dataset indicated that Omnitrophota of every class are nearly absent from host-associated biomes but ubiquitous in the environment, especially soils and sediments, albeit at low abundance.

No highly correlated partners could be identified from amplicon data; *Omnitrophot*a may be parasites or symbionts that interact with either **micro-eukaryotes** or **multiple species** of Bacteria and/or Archaea.

Omnitrophota possess genes indicative of a parasitic or syntrophic lifestyle. Study of this lineage will provide insight into the evolution of parasitism and predation in bacteria, which likely evolved prior to eukaryotic multicellularity.

References and Acknowledgements

References. [1] Hugenholtz, P. et al. Journal of Bacteriology 180, 366–376 (1998). [2] Kolinko, S. et al. Environmental Microbiology 18, 21–37 (2016). [3] Kizina, J. Insights into the biology of Candidate Division OP3 LiM populations. (2017). [4] Parks, D. H. et al. Nat Biotechnol 36, 996–1004 (2018). [5] Chaumeil, P.-A. et al. Bioinformatics 36, 1925–1927 (2019). [6] Jain, C. et al. Nat Commun 9, 1–8 (2018). [7] Anantharaman, K. et al. Nature Communications 7, 13219 (2016). [8] Hug, L. A. et al. Environ Microbiol 18, 159–173 (2016). [9] Hug, L. A. et al. ISME J 9, 1846–1856 (2015). [10] Probst, A. J. et al. Nature Microbiology 3, 328–336 (2018). [111] Beam, J. P. et al. Front. Microbiol. 11, (2020). [12] Pruesse, E. et al. Nucleic Acids Res 35, 7188–7196 (2007). [13] Bolyen, E. et al. Nat Biotechnol 37, 852–857 (2019). [14] Bokulich, N. A. et al. Microbiome 6, 1–17 (2018). [15] Thompson, L. R. et al. Nature 551, 457–463 (2017). [16] Aramaki, T. et al. Bioinformatics btz859, (2019). [17] Bateman, A. et al. Nucleic Acids Research 32, D138–D141 (2004). [18] Haft, D. H. et al. Nucleic Acids Res 31, 371–373 (2003). **[19]** Abby, S. S. *et al. Sci Rep* **6**, 1–14 (2016).

This material is based upon work supported in part by the National Aeronautics and Space Administration under Grant No. 80NSSC20M0043.

Figure 4. Schematic summarizing and comparing the conservation of KEGG^[16] pathways within each class of *Omnitrophota*. Lines represent genes or modules as appropriate. Reactions are represented by multiple-line segments. Components of a complex are represented by colored circles. Segments of a circle surrounding a complex indicate the completeness of that complex. The colors of each of these shapes correspond to each class. Shapes are opaque if the gene or gene set catalyzing a given reaction is predicted to be present in the representative genomes of $\geq 50\%$ of species, transparent if >1 and <50\% of

Conclusions