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MOTIVATION DSCC METHOD
Cancer subtyping i1s crucial to improve treatment and prognosis.
Multi-omics data integration 1s important because 1t allows us to
differentiate among subtypes from a holistic perspective that takes into
consideration phenomena at various levels (proteomics, mutations,
etc.). However, the following challenges need to be overcome:

(i) Inputs: Multi-omics data of cancer patients, and cancer pathways available on Kyoto Encyclopedia of
Genes and Genomes [1].

(ii) Dimension Reduction: (1) Project data into pathways; (2) Perform factor analysis for continuous data and
multiple correspondence analysis (MCA) for categorical data; and (3) Perform principal component analysis.

» Missing data (e.g., a patient has mRNA but not methylation) (iii) Patient network construction: (1) Build connectivity matrix for each data type using consensus
* The integration of continuous and categorical variables clustering; and (2) Combine similarity matrices using Kolmogorov—Smirnov test (KS test) and compatibility
* High-dimensionality and large sample sizes metrics.
iv) Subtyping: Partition the patient network using a community detection algorithm (Louvain [2]).
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Figure 1: Analysis results using 33 cancer datasets. 8. Genomic Data Commons Data Portal, https:/portal.gdc.cancer.gov.
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