scCAN: A Single cell clustering method using autoencoder
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Background Methodology Conclusion

single-cell RNA sequencing technologies (scRNA-seq) have | Genes filtering and generation of larent variables: scCAN uses non- || Here we introduce a new method scCAN
allowed us to monitor biological systems at single-cell resolution || negative autoencoder to keep the 5,000 most informative genes. Then, || for single-cell analysis. Our analysis results

[1]. Defining cell types through unsupervised learning is | the denoised data is passed to Bayesian stack autoencoder to obtain | demonstrate that the method:

considered the most powerful application of scRNA-seq data. multiple latent variables (Figure 2A). « Outperforms existing state-of-the-art
This has led to the creation of a number of atlas projects that approaches for cell segregation using
aim to build the references of all cell types [2,3]. Network fusion based scRNA-seq clustering: scRNA-seq.

» For small datasets (less than 2,000 cells) scCAN converts latent | * Is the fast method for big data.
J variables to networks. The obtained networks are combined to a | * IS robust against dropout events.
single fused network. scCAN applies spectral clustering algorithm on | ¢ Is the best method in predicting the true
fused network to group the cells (Figure 2B) number of cell types.
* For big datasets (more than 2,000 cells), scCAN uses sub-sampling

strategy to get 2,000 cells for training. Then, scCAN uses the approach
mentioned in Figure 2B to partition the training cells. scCAN uses k-

The ever-increasing number of cells, the high-dimensionality of
scRNA-seg data, technical noise, and high dropout rate pose
significant computational challenges Iin cell segregation. The
goal here is to develop a novel method able to accurately
separate different cell types in scRNA-seq data.
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