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Background Methodology

Results

Conclusion

Single-cell RNA sequencing technologies (scRNA-seq) have
allowed us to monitor biological systems at single-cell resolution
[1]. Defining cell types through unsupervised learning is
considered the most powerful application of scRNA-seq data.
This has led to the creation of a number of atlas projects that
aim to build the references of all cell types [2,3].

hypothesis testing
approach to determine the set of genes that are likely to be

impacted by dropouts

Objectives

The ever-increasing number of cells, the high-dimensionality of
scRNA-seg data, technical noise, and high dropout rate pose
significant computational challenges in cell segregation. The
goal here is to develop a novel method able to accurately
separate different cell types in scRNA-seq data.

Data: 26 datasets with more than a million cells and simulation.
Metric: Adjusted Rand Index (ARI) [4], Adjusted Mutual
Information [5] and V-measure [6].
Methods: CIDR [7], SEURAT3 [8], Monocle3 [9], SHARP [10],
SCANPY [11].
Results: scCAN outperforms other methods by having the highest
ARI, AMI and V-measure values (panels A, B, C in Figure 1). scCAN is
also the most scalable (panels D and E in Figure 1).

Figure 1: scCAN outperforms state-of-the-art methods real data analysis 
and simulation studies.

Genes filtering and generation of larent variables: scCAN uses non-
negative autoencoder to keep the 5,000 most informative genes. Then,
the denoised data is passed to Bayesian stack autoencoder to obtain
multiple latent variables (Figure 2A).

Network fusion based scRNA-seq clustering:
• For small datasets (less than 2,000 cells), scCAN converts latent
variables to networks. The obtained networks are combined to a
single fused network. scCAN applies spectral clustering algorithm on
fused network to group the cells (Figure 2B)

• For big datasets (more than 2,000 cells), scCAN uses sub-sampling
strategy to get 2,000 cells for training. Then, scCAN uses the approach
mentioned in Figure 2B to partition the training cells. scCAN uses k-
NN to map remaining cells to the training data clusters (Figure 2C).

Figure 2: The overall analysis pipeline of scCAN.
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Here we introduce a new method scCAN
for single-cell analysis. Our analysis results
demonstrate that the method:
• Outperforms existing state-of-the-art
approaches for cell segregation using
scRNA-seq.

• is the fast method for big data.
• is robust against dropout events.
• is the best method in predicting the true
number of cell types.
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